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Abstract—Stability of an affine switching system is studied. The system comes to existence
when stabilizing a chain of two integrators by means of a feedback in the form of nested
saturators. The use of such a feedback allows one to easily take into account boundedness
of the control resource, to constrain the maximum velocity of approaching the equilibrium
state, which is especially important in the case of large initial deviations, and to ensure desired
characteristics of the transient process, such as a given exponential rate of the deviation decrease
near the equilibrium state. It is proved that the closed-loop system is globally stable.
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1. INTRODUCTION

Hybrid systems are dynamical systems that exhibit both continuous-time and discrete-time
behavior; i.e., systems whose states vary continuously but may also jump [1]. A switching system
is a hybrid dynamical system consisting of a number of subsystems and a switching law determining
which subsystem is active at a current moment of time [2]. Systems of this kind are encountered in
many control problems in various fields of science and technology [1, 2]. One of the most important
problems in study of switching systems is that of stability [2–4]. It is stability of the switching
system under consideration that is discussed in this work.

The affine switching system under study comes to existence when stabilizing a chain of two
integrators by means of a feedback in the form of nested saturators. The problem of stabilizing
chains of integrators was widely discussed in the literature during last several decades (see, e.g., [5–7]
and references therein). The interest to this problem is motivated by the fact that many real-
life systems in applications (e.g., mechanical planar ones) are modeled by chains of integrators;
moreover, controls developed for chains of integrators can be easily extended to larger classes of
systems.

Feedbacks in the form of nested saturators were studied and used for stabilizing integrators in
many publications (see, e.g., [5, 6, 8–11] and references therein). However, the author is not aware
of the works the results of which could be used for establishing stability of the system closed by
the feedback considered in the paper. The general case of the nth-order integrator was discussed,
for example, in [5, 6]. However, global stability of the system closed by a feedback in the form
of n nested saturators was proved only for the special case where the limits of the saturation
functions satisfy certain inequalities [5, Theorem 2.1], which are not fulfilled for the feedback used
in this study. Global stability of the second-order integrator stabilized by a feedback in the form
of nested saturators, but with the reversed order of the arguments (see the next section for more
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detail), was proved in [8, 9]. However, the approach employed in these works is not applicable to
the case of the feedback considered in this paper.

The feedback of the form considered in the paper was studied earlier in some works. For example,
in [10, 11], optimization problems of selecting the feedback coefficients were discussed; in [12–14],
it was used in the synthesis of controllers for stabilizing higher-order integrators. In these works,
stability of the system closed by such a feedback was implied but was not proved. The goal of this
study is to prove global stability of the system discussed filling thus this gap. The interest in the
feedback in the form of nested saturators is explained by a number of remarkable features of the
closed-loop system obtained, which is discussed in the next section.

2. PROBLEM STATEMENT

Consider the problem of stabilizing a chain of two integrators:

ẋ1 = x2, ẋ2 = U(x), (1)

where x ≡ [x1, x2]
T, by means of a continuous feedback with a constrained control resource

Umax = k4 : U(x) =−k3(x2+k2sat(k1x1)) for |U(x)|� k4 and U(x) =−k4sign(k3(x2+k2sat(k1x1)))
for |U(x)|>k4. In the compact form, control U(x) is written as

U(x) = −k4sat

(
k3
k4

(x2 + k2sat(k1x1))

)
, (2)

where sat(·) is the nonsmooth saturation function: sat(w) = w for |w| � 1 and sat(w) = sign(w)
for |w| > 1. The advantage of the feedback in the form of nested saturators is that not only
the control constraint is automatically satisfied but also the maximum speed of approaching the
equilibrium is limited: if we set k2 = Vmax, then, for any initial deviation, ẋ1(t) � Vmax as long
as x2(0) � Vmax [11]. Moreover, any desired type of the equilibrium (node, pole, or center) and
any desired value of the exponential rate of deviation decrease near the origin can be ensured by
appropriate choice of the coefficients k1 and k3 [11].

As noted in the Introduction, in [8, 9], a feedback of form (2) with the reverse compared to (2)
order of arguments, where the argument of the internal saturator is velocity x2 and that of the
external saturator is deviation x1, was considered (in [9], the argument of the external saturator
depends additionally on the velocity squared x22), and it was proved that the second-order integrator
closed by such a feedback is globally stable. The proof in both works is based on the existence of a
Lyapunov function in the form of the sum of a quadratic and integral terms. For system (1), (2),
however, this expedient is not applicable, since no Lyapunov function is available.

2.1. Equivalent Representation in the Form of an Affine Switching System

Let us first show that system (1), (2) is an affine switching one. Consider partitioning of
plane (x1, x2) into five sets (Fig. 1). In the set D1, we include all points where both saturators are
not saturated:

D1 = {(x1, x2) : |x1| < 1/k1, |x2 + k1x1| < k4/k3}
(the inclined strip bounded by the dashed lines in Fig. 1). The set D2 consists of all points where
the internal saturator reaches saturation, while the external one does not:

D2 = {(x1, x2) : |x1| � 1/k1, |x2 + k2sgn(x1)| < k4/k3}.

As can be seen from the figure, D2 consists of the two disjoint sets D−
2 and D+

2 belonging to the
left and right half-planes, respectively (two disjoint horizontal strips in Fig. 1). The set

D3 = {(x1, x2) : |x2 + k2sat(k1x1))| > k4/k3}
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includes all points where the external saturator reaches saturation. Like D2, D3 consists of two
nonintersecting sets D−

3 and D+
3 lying above and below the line x2 = −sat(k1x1) (the solid broken

line in Fig. 1), in which U1(x) ≡ −k4 and U1(x) ≡ +k4, respectively.

From formula (2), it can be seen that U(x) is a piecewise continuous function:

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−k3x2 − k1k2k3x1, (x1, x2) ∈ D1,

−k3(x2 − k2), (x1, x2) ∈ D−
2 ,

−k3(x2 + k2), (x1, x2) ∈ D+
2 ,

−k4, (x1, x2) ∈ D−
3 ,

+k4, (x1, x2) ∈ D+
3 ,

(3)

and the closed-loop system (1), (2) includes five linear systems, with the switching between them
being state dependent according to equation (3). The goal of this study is to prove global stability
of this system.

The standard method of proving stability of linear switching systems—determining a common
Lyapunov function for all systems—is not applicable in this case, since the origin is an equilibrium
point for only the first system with the domain D1. The other four systems, although linear ones,
have no equilibria at all; i.e., we deal with an affine switching system. The standard method of
proving stability of general-form nonlinear systems with the help of a Lyapunov function (like, e.g.,
in [9]) cannot be applied either since we failed to find one for the system under consideration.

2.2. Representation in Dimensionless Form

To begin with, we simplify the task by reducing the number of the system parameters. Clearly,
stability of the system does not depend on particular values of the control resource k4 and maximum
velocity k2, so that we can set them equal to one. Indeed, turning to dimensionless variables
x̃1 = k4x1/k

2
2 , x̃2 = x2/k2 and time t̃ = k4t/k2, we reduce system (1), (2) to the form

dx̃1

dt̃
= x̃2,

dx̃2

dt̃
= −sat(k̃3(x̃2 + sat(k̃1x̃1))), (4)

where k̃1 = k1k
2
2/k4 and k̃3 = k2k3/k4, with unitary dimensionless control resource k̃4 = 1 and uni-

tary maximum velocity k̃2 = 1. In what follows, all variables and constants are assumed dimension-
less and are denoted by the same symbols (without tilde) as dimensional ones. As before, we use the
dot notation to denote the derivatives with respect to the dimensionless time. Moreover, without
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loss of generality, we will select coefficients k1 and k3 from a one-parameter family parameterized
by the exponential rate λ of the deviation decrease near the origin:

k1 = λ/2, k3 = 2λ, λ > 0. (5)

With these coefficients, system (1) closed by the feedback (2) takes the form

ẋ1 = x2, ẋ2 = −sat(2λ(x2 + sat(λx1/2))). (6)

In D1, we have linear system
ẋ1 = x2, ẋ2 = −λ2x1 − 2λx2, (7)

the characteristic equation of which has two identical roots λ1 = λ2 = −λ; i.e., the origin is a stable
degenerate node. In other domains, we have the following systems:

ẋ1 = x2, ẋ2 = −2λ(x2 − 1), (x1, x2) ∈ D−
2 , (8)

ẋ1 = x2, ẋ2 = −2λ(x2 + 1), (x1, x2) ∈ D+
2 , (9)

ẋ1 = x2, ẋ2 = −1, (x1, x2) ∈ D−
3 , (10)

ẋ1 = x2, ẋ2 = 1, (x1, x2) ∈ D+
3 . (11)

Equation (6) is an equivalent representation of the switching system (7)–(11).

3. PROOF OF GLOBAL STABILITY

First, we prove that, in the study of stability of the system. we can confine ourselves to the
consideration of the trajectories beginning in the set D1.

Proposition. System (7)–(11) is globally asymptotically stable if and only if any trajectory
beginning in the set D1 asymptotically tends to the origin.

The necessity of the assertion is evident. The sufficiency is proved by showing that any trajectory
with arbitrary initial conditions occurs in the set D1 in a finite time. Let us prove this. Indeed,
from equations (10) and (11), it is seen that trajectories of the system in D−

3 and D+
3 are parabolas

x1 = ∓1

2
x22 + C. (12)

Since any parabola cannot lie entirely in D−
3 or D+

3 (see Fig. 1) and the system moves with the
constant acceleration, it inevitably occurs in a finite time in either D1 or D2. Further, from
equations (8) and (9), it is seen that, in D−

2 (D+
2 ), the system moves in the positive (negative)

direction of x1 and x2(t) → 1 (x2(t) → −1). Then, it follows that the system inevitably enters D1

in a finite time. Thus, for any initial conditions, after at most two switchings, the system occurs
in the set D1. Further, only trajectories beginning in D1 are considered.

Theorem 1. System (6) is globally asymptotically stable for any λ > 0.

Proof. Let us find out whether the system can enter D2 from D1. For definiteness, consider
the boundary between D1 and D+

2 . From the first equation in (9), it is seen that the trajectory
can intersect the boundary only if x2 is positive, i.e., when the half-width 1/2λ of the strip D2

is greater than one, like in the case shown in Fig. 2, which takes place only when λ < 1/2. Since
the right-hand side of the second equation in (9) in this case is negative, x2(t) will change sign in
a finite time, This, in turn, will change the direction of motion along x1-axis, bringing thus the
system to D1 again. Note that the segment of the asymptote x2 = −λx1 (the bold line in Fig. 2) of
the linear system (7) for which |x1| � 2/λ lies completely in D1. Since no trajectory of the system
can intersect the asymptote in D1, all trajectories asymptotically tend to the origin. The case of
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negative x1 is considered similarly. Thus, for small λ < 1/2, the system is globally stable. Note
that, in this case, any trajectory beginning in the set D1 can intersect the boundary between the
sets (D1 and D2) not more than twice.

Let us determine conditions under which the system can switch from D1 to D3. The boundary
between the sets (dashed lines in Fig. 1) is given by the equations

x2 = −λ

2
x1 ±

1

2λ
, − 2

λ
� x1 �

2

λ
, (13)

where the plus sign before the second addend corresponds to the upper boundary (the boundary
between D1 and D−

3 ), and the minus sign, to the lower boundary. A trajectory can intersect the
boundary only if its slope is less than that of the boundary, which is λ/2. From equations (10)
and (11), we find that the slope of the trajectory on the boundary is 1/x2, from which it follows
that the trajectory can intersect the upper (lower) boundary only at the points with ordinates
satisfying the inequality x2 > 2/λ (x2 < −2/λ), i.e., in the region

|x2| > 2/λ. (14)

Since the maximum value of |x2| in D1 is achieved in two angular points with ordinates
±(1 + 1/(2λ)), trajectories cannot intersect the boundary when λ � 3/2.

Thus, global stability of the system is proved for all λ � 3/2. Moreover, we proved the following
nontrivial assertion.

Lemma 1. Let 1/2 � λ � 3/2. Then, D1 is an invariant set of the switching system (6).

Note that D1 in this case is an invariant set of the linear system (7) either. Now, let us prove that
the system is globally stable for any greater values of λ. From the above calculations, it follows
that, for λ > 3/2, the system can pass from D1 to only D3. Consider, for definiteness, the upper
part of the phase plane, where U(x) < 0. Constant C on the right-hand side of (12) depends on the
coordinates of the point where the system passes from D1 to D−

3 . Let x2∗ denote the ordinate of
the point where the trajectory intersects the boundary (the abscissa is uniquely determined from
the equation of the boundary (13)). Then,

C ≡ C(x2∗) =
1

2

(
x22∗ −

4x2∗
λ

+
2

λ2

)
.

Substituting the right-hand side of this formula for C in (12) and solving the quadratic equation
obtained, we find the ordinate (denote it as x2∗∗) of the second intersection point of the parabola
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and the boundary (13), where the system switches from (10) to (7):

x2∗∗ =
4

λ
− x2∗. (15)

With regard to the inequalities
2

λ
< x2∗ � 1 +

1

2λ
,

it follows from (15) that x2∗∗ satisfies the inequalities

2

λ
> x2∗∗ � −1 +

7

2λ
> −1 +

1

2λ
;

i.e., the second intersection point of the parabola and the line (13) belongs to the boundary between
D−

3 and D1, and, hence, the trajectory passing from D1 to D3 cannot occur in D2. Thus, when
λ > 3/2, switchings are possible only between the three systems with the domains D1, D

−
3 , and D+

3 .
Similarly, two successive points of intersection of the boundry between D1 and D+

3 are found to be

x2∗∗ = − 4

λ
− x2∗, − 2

λ
< x2∗ � −1− 1

2λ
. (16)

Since any trajectory cannot have self-intersections and does not go to infinity, it will suffice to prove
that no closed trajectory (cycle) exists [15]. Let us assume the contrary: suppose that there exists
a closed trajectory. From the above discussions, it follows that such a trajectory consists of four
segments: two segments in D1, one segment in D+

3 , and one segment in D−
3 , with the motion along

the trajectory being clockwise.

Let us show that there exists a positive definite function that decreases on all segments of the
cycle, from which it follows that the trajectory cannot be closed. Note that we do not mean a
Lyapunov function, since we do not require negativeness of its derivative by virtue of system (6)
at all points of the trajectory. We seek for a function the total variation of which ater passing the
entire segment completely lying in one of the regions D1, D

−
3 , or D

+
3 is negative. For a candidate

of the desired function, we take a quadratic Lyapunov function F = λ3xTPx (the multiplier λ3 is
introduced for the convenience of notation) of the linear system (7). Here, P is a positive definite
matrix of order two satisfying the linear matrix inequality (LMI) ATP + PA < 0 [16], and A is the
matrix of the linear system (7):

A =

(
0 1

−λ2 −2λ

)
.

In [17], it was shown that matrix P can be represented in the form

P =

(
λ q1/2

q1/2 q2/λ

)
, (17)

where q1, q2 > 0 belong to the ellipse Ω (Fig. 3) defined by the inequality

(q2 − q1 − 1)2 + (q1 − 2)2 � 4. (18)

Let us find out whether there exist (q1, q2) ∈ Ω such that function F decreases on each of the four
segments.

The derivative of function F by virtue of system (7) is negative by definition, which guarantees
that function F decreases on two trajectory segments lying in D1. On the segments lying in D3,
negativeness of the derivative of F is not guaranteed; however, we prove further that the integral
variation of F on each of these segments is negative; i.e., the value of the function at the boundary
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point where the system passes from D1 to D3 is greater than that at the point where it returns
from D3 to D1.

Substituting the right-hand side of (17) into F , we get F (x) = λ2(λ2x21 + λq1x1x2 + q2x
2
2). Ex-

pressing x1 in terms of x2 from the equation of boundary (13) and substituting it into the right-hand
side of the formula for function F , we obtain the value of F on the upper boundary of D1:

F (x2) = c1x
2
2 − c2x2 + 1, (19)

where c1 = λ2(q2 − 2q1 + 4) and c2 = λ(4− q1). It follows from inequality (18) that q1 < 4 and,
hence, c2 > 0 ∀q1, q2 ∈Ω. It is easy to show that ellipse (18) has no intersections with the straight
line q2 − 2q1 − 4 = 0 (the dashed line in Fig. 3) and lies above it; hence, c1 > 0 ∀q1, q2 ∈Ω. Let us
find the variation ΔF of function F on the trajectory segment lying in D−

3 . With regard to (19)
and (15), at the beginning and end points of the segment, the function takes values

F (x2∗) = c1x
2
2∗ − c2x2∗ + 1, F (x2∗∗) = c1(4/λ − x2∗)

2 − c2(4/λ − x2∗) + 1.

Then, it follows that

ΔF = F (x2∗∗)− F (x2∗) = c1(16/λ
2 − 8x2∗/λ) + 2c2x2∗ − 4c2/λ

= (2c2 − 8c1/λ)x2∗ + 16c1/λ
2 − 4c2/λ = −(8q2 − 14q1 + 24)(λx2∗ − 2).

It is easy to verify that the straight line 8q2 − 14q1 + 24 = 0 (solid line in Fig. 3) touches ellipse Ω
and lies below it, so that the first multiplier is positive. Since, according to (14), x2∗ > 2/λ, the
second multiplier is positive either, so that ΔF < 0 for any (q1, q2) ∈ Ω.

Repeating these calculations for the lower boundary of set D1 and taking into account (16), we
find

F (x2) = c1x
2
2 + c2x2 + 1 (20)

and

ΔF = c1(4/λ + x2∗)
2 − c2(4/λ+ x2∗)− c1x

2
2∗ − c2x2∗

= (8q2 − 14q1 + 24)(λx2∗ + 2). (21)
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According to (14), on the lower boundary, x2∗ < −2/λ, the second multiplier in (21) is negative;
hence, the variation of function F on the trajectory segment lying in D+

3 is also negative. Thus, for
any (q1, q2) ∈ Ω, the value of the quadratic Lyapunov function of the linear system (7) decreases
after passing each trajectory segment, from which it follows that the trajectory cannot be a closed
curve. The theorem is proved.

Numerical examples illustrating behavior of the trajectories of integrator (1) stabilized by means
of feedback (2) can be found in [10, 11].

4. CONCLUSIONS

The problem of stabilizing a second-order affine system consisting of five subsystems, of which
only one has a stable equilibrium, with a state-depending switching law has been considered. The
system under study comes to existence when applying a feedback in the form of nested saturators for
stabilizing a chain of two integrators. The advantages of the considered feedback are its continuity
and boundedness, as well as the possibility to ensure desired characteristics of the transient process.
By means of an appropriate selection of the four feedback coefficients, it is easy to ensure a desired
type of the equilibrium and a desired exponential rate of the deviation decrease near the equilibrium
state, as well as to constrain the maximum speed of approaching the equilibrium state, which is
especially important in the case of large initial deviations. The main result of the study is the proof
of global stability of the considered affine switching system.
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